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OptiDock: Virtual HTS of Combinatorial Libraries by Efficient
Sampling of Binding Modes in Product Space

Dennis G. Sprous,† David R. Lowis, Joseph M. Leonard,‡ Trevor Heritage,
Steven N. Burkett, David S. Baker, and Robert D. Clark*

Tripos Inc., 1699 South Hanley Road, St. Louis, Missouri 63144

ReceiVed December 5, 2003

Products from combinatorial libraries generally share a common core structure that can be exploited to
improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find
a method that scales with the total number of reagents (Σ growth) rather with the number of products (Π
growth). The OptiDock methodology described herein entails selecting a diverse but representative subset
of compounds that span the structural space encompassed by the full library. These compounds are docked
individually using the FlexX program (Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G.J. Mol. Biol. 1995,
251, 470-489) to define distinct docking modes in terms of reference placements for combinatorial core
atoms. Thereafter, substituents in R-cores (consisting of the core structure substituted at a single variation
site) are docked, keeping the core atoms fixed at the coordinates dictated by each reference placement.
Interaction energies are calculated for each docked R-core with respect to the target protein, and energies
for whole compounds are calculated by finding the reference core placement for which the sum of
corresponding R-core energies is most negative. The use of diverse whole compounds to define binding
modes is a key advantage of the protocol over other combinatorial docking programs. As a result, OptiDock
returns better-scoring conformers than does serially applied FlexX. OptiDock is also better able to find a
viable docked pose for each library member than are other combinatorial approaches.

Introduction

The use of in silico docking of potential ligands into
protein binding sites for virtual high-throughput screening
(vHTS) has become an integral part of computer-aided drug
discovery and development in recent years. The docking
programs currently in use can be broadly classified as “rigid
body” or “flexible”, depending on how they treat rotatable
bonds in the ligand (and in some cases, in the protein).
Examples of rigid body docking programs include DOCK2

and FRED.3 These programs can optimally position a
specified ligand conformer in the protein cleft in 0.1-3 s
and return a pseudoenergy interaction score for each pose
produced. The approach requires the generation, storage, and
management of large conformer libraries, which may actually
require more CPU time and human intervention than does
the docking run itself. It also assumes that the full range of
conformations available to a ligand can be adequately
represented by a relatively small sample thereof. This
assumption often fails, however, in that more fully flexible
docking programs generally can outperform their rigid body
counterparts.4-6 Flexible docking programs vary in their
underlying protocols, but characteristically operate on a time
scale of minutes per ligand. Documented approaches include

simulated annealing,7 Monte Carlo,8,9 distance geometry,10

genetic algorithms,11 and incremental construction.1,12,13

Using vHTS to search for new lead compounds requires
that large numbers of candidate ligands be passed through
the docking program used, which presupposes very efficient
processing. The structural redundancy characteristic of
combinatorial libraries makes serial docking inherently
inefficient, thereby offering an excellent opportunity to
reduce CPU demand dramatically. Two programs have been
developed in which critical steps in the docking procedure
are modified to work with structures in such a way that the
number of operations required grows in proportion to the
total number ofsubstituents(M ) ∑j)1

q mj,wheremj is the
number of substituents considered at variation site Rj, andq
is the number of variation points), rather than in proportion
to the number of combinatorialproducts (N ) Πj)1

q mj).
Both programs start by docking fragments rather than intact
products, which can result in some significant limitations.

The CombiDOCK program introduced by Kuntz et al.14

starts by docking a core structure devoid of substituents to
define the potential docking modes subsequently considered.
A range of alternative conformations are then considered for
individual substituents at each variation site. A binding
energy for each product is then calculated by simple
summation of contributing substructure interaction energies.
This is valid, since the scoring function employed lacks
intramolecular terms: interactions between atoms in the
ligand and in the protein are taken into consideration, but
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interactions between different atoms in the ligand are only
considered when prohibitive van der Waals bumps are found.

The FlexXC program introduced by Rarey and Lengauer15

takes a somewhat different approach. With the parent
incremental construction program FlexX,1 the slow step in
docking is typically identifying and positioning a good initial
base fragment. This is a small substructure from the parent
compound that is positioned favorably within the binding
site, thereby defining a starting pose from which the
remainder of the molecule is subsequently built up. A
particular fragment may produce several good starting poses,
but the branch and prune logic of the program restricts the
total number of such base placements that can be considered.
When the act of defining a base placement is repeated for
each member of the combinatorial library, the same base
placements get “rediscovered” over and over again. FlexXC

achieves a sizable speedup over serial FlexX by allowing
the user to specify that base placements are all to be drawn
from the substituent list for a single variation site R* (or
from the core). These are determined once and saved in
memory. When the incremental construction protocol is
invoked to start building a new molecule, it pulls an
appropriate base placement from memory and proceeds from
there. The rate-limiting step of FlexX is then carried out only
some small multiple ofm* times rather thanN times, so the
processing time required exhibitsΣ growth with increasing
library size rather than theΠ growth of serial FlexX.

This improvement in scaling is not without cost, however.
FlexX is free to select an initial base fragment from anywhere
in the molecule, but FlexXC requires that the base fragment
be selected from the substituent list for the specified variation
site. Hence, results obtained from FlexXC can differ signifi-
cantly from those obtained from serial FlexX, since different
starting points often produce different incremental construc-
tion trajectories. In cases in which interaction with substit-
uents at the selected variation site dominates binding, the
discrepancy will generally be small, but in other cases, it
can be substantial. In particular, some substituent lists may
have several members for which no substructure is suitable
for use as a base fragment. Any compound bearing such a
substituent at the designated base variation site will fail to
dock, since there is no possible starting point. This potential
shortcoming was noted in the initial FlexXC publication.15

In addition, compounds whose docking mode is dominated
by interactions with the core or with substituents at variation
sites other than R* may dock incorrectly.

Herein, we describe the improved, complementary ap-
proach embodied in OptiDock.16 Our protocol assumes, as
do the other approaches, that a relatively modest numberT
(,N) of core poses can adequately account for the imporatnt
docking modes found for a given combinatorial library and
target protein. In contrast to the other methods, however,
those core poses are extracted from a set of intact products
obtained by efficient sampling based on substructure that
have been docked independently of one another. Moreover,
it does so in such a way that increasingT progressively
increases the accuracy of the results obtained as more
reference poses are considered, that is, asT increases. This
is accomplished by selecting a structurally diverse but

representative subset of compounds from the combinatorial
library, docking these compounds, and then extracting diverse
and representative core placements from the poses obtained.
Core structures are then decorated by adding single substit-
uents drawn from each variation list in turn, and these
truncated products (R-cores) are docked using FlexX with
the core atoms fixed in place, as specified in each reference
placement. Once FlexX has applied the incremental con-
struction protocol to build and score all possible substituent
R-groups across all variation points, then whole-compound
energies per binding mode can be estimated by simple
summation of contributing R-group scores.

The present paper describes the OptiDock protocol in
depth. The stages of the OptiDock protocol are explained,
and considerations of parameter settings are discussed.
Results for three different combinatorial vHTS examples are
presented using the method as embodied in version 6.8 of
SYBYL.16 These examples serve to illustrate how CPU usage
scales in practice, how reproducible the method is, and how
well docking energies correlate with experimentally deter-
mined affinities.

Methodology

Library Definition. Combinatorial libraries were input
into a compact library definition format known as a CSLN,
for Combinatorial SLN, an extension of SYBYL Line
Notation.17 Each CSLN consists of a core 2D structure, with
variation sites indicated by Markush atoms, plus appended
lists of the substituents found at each site. A very simple,
four-compound library consisting of dipeptides bearing
glycine or alanine at the first position and valine or aspartic
acid at the second is represented by the CSLN,

(The chirality flags that would normally be included have
been omitted for simplicity’s sake). Each compound in a
library with q variation sites can then be represented by a
vectorV, theq elements of which are indices specifying the
particular substituent found at the corresponding site. For
the dipeptide example given above, for example,V ) [1 1]
and V ) [2 2] represent glycyl valine and alanyl aspartic
acid, respectively.

2D Sampling of the Library. 3D structural diversity in
docking mode space can be achieved by exploiting a diverse
and representative subset of products determined at the 2D
level using OptiSim methodology.18-20 A starting product
is chosen on the basis of a random number seed supplied by
the user, then a series of subsamples ofK candidate
compounds are drawn at random from the CSLN. At each
iteration, the candidate from the subsample that is least
structurally similar to those selected in previous iterations
is chosen for addition to the training set.18-20 The process
continues until the prespecified number,S, of compounds
has been selected or until no more valid candidates are
available. WhenK is small (typically in the range of 3-5),
the subset obtained using this optimizableK dissimilarity
(OptiSim) selection procedure is diverse but still representa-
tive of the original dataset.18,19 Redundancy in the selection

NH2CH(Y1)C()O)NHCH(Y2)C()O)OH{Y1:H,CH3}
{Y2:CH(CH3)CH3,CH2C()O)OH}

OptiDock Journal of Combinatorial Chemistry, 2004, Vol. 6, No. 4531



set is avoided by requiring that no candidate in the subsample
be too similar to any compound selected during previous
iterations. For the work described here,K was set to 5, and
a value of 0.85 was used for the maximum allowed Tanimoto
similarity21 with respect to UNITY substructural finger-
prints.22

Selection of Reference Core Placements.Each com-
pound in the selected subset is docked independently using
FlexX. The initial set of reference core placements is then
obtained by stripping away the substituents from the best-
scoring pose for each docked product, retaining coordinates
for the core atoms. Though the compounds from which they
are obtained are structurally diverse, the placements them-
selves may not be. Hence, another round of OptiSim selection
is carried out in Euclidean space to identifyT representative
and diverse reference placements. In this case, similarity is
assessed in 3D space, that is, using the root-mean-square
distance (RMSD) between corresponding core atoms in pairs
of placements. The initial reference placement chosen is
based on a random number seed provided by the user.

A subsample sizeK ) 5 was used in the experiments
reported here, and the minimum RMSD allowed between
reference placements was 0.25 Å unless otherwise indicated.
The number of placements was set equal to the training set
size, which ensured that OptiSim selection would run until
exhaustion, that is, until every core in the docked training
set fell close to (here, within an RMSD of 0.25 Å of) some
reference core placement.

R-Core Generation and Docking.The potential contri-
bution of each substituent at each variation site to binding
is estimated for each distinct reference core placement by
constructing and docking a series of R-cores (Figure 1)
analogous to those described by Kuntz and co-workers.14 As
used here, an R-core consists of the structural core common
to all members of the library with one substitution at a single
variation point. The remaining variation sites need to be
“capped” so as to minimize spurious effects from open
valences, for example, on nitrogen or oxygen bridging atoms.
Methyl groups work well for this purpose in FlexX.

Each of theM R-cores is then positioned in the target
binding site using the core atom coordinates from each of
the T reference placements. Docking then proceeds using
FlexX in a constrained mode, such that the core is used as

the base fragment and the atoms in it are fixed in place. The
end result is thenT × M piecewise binding energies, one
for each R-core docked using each reference core placement.
This strategy proved adequate for the studies described here,
but there is no intrinsic barrier to using multiple good docking
configurations for each placement of each R-core.

Figure 2 illustrates the procedure used. Products from the
training set are docked independently, and reference place-
ments for each are obtained from the corresponding core
atom coordinates (Figure 2A,B). These are then used to
position R-cores from which contingent substituent configu-
rations can be determined (Figure 2C); the best-scoring side
chain configuration is highlighted in green for one placement
in each case.

In addition to the R-cores, OptiDock creates a structure
composed of the core with a capping group added at each
variation point. This structure (V0) is passed to FlexX to
determine the energy contribution from the core itself.

Estimating Binding Energies for Whole Compounds.
OptiDock evaluates docking energies for multiple conforma-
tions of each compound. The maximum number of confor-
mations per compound is effectively the number of binding
modes successfully determined after elimination of 3D
redundancies by OptiSim. This number may be less, how-
ever, if atoms are found to be overlapping when whole
compounds are assembled and R-group conformations that
were created in isolation are found to coexist at the same
points in space. Each particular conformation is specifically
matched with a docking mode,k. The R-cores representing
the substituents onVi can then be represented byq vectors,
Vj(Vi). Since the FlexX energy function lacks conformation-
ally dependent intramolecular terms, such as intramolecular
electrostatics or intramolecular Lennard-Jones potential, the
energy ofVi for each placementk can be calculated by
summing over the contributions from each R-group in
compoundVi and the combinatorial coreV0.

The prime symbol in the second term is intended to indicate
that this is the docking energy of the R-group rather than of
the R-core. The equation above was written to stress that all
terms are specific for a unique docking modek. E′k (Vj(Vi))
(the energy of an isolated R-group at a specific docking
mode) is easily calculated as the difference between the
energy of the core (Ek(V0)) and the energy of the R-core
(Ek(Vj(Vi))) for that docking mode.

Combining eqs 1 and 2 gives us the following:

Equation 3 can be simplified to

Figure 1. Relation of a compound of an order three combinatorial
library to its contributing R-cores.

Ek(Vi) ) Ek(V0) + ∑
j)1

q

E′k(Vj(Vi)) (1)

E′k(Vj(Vi)) ) Ek(Vj(Vi)) - Ek(V0) (2)

Ek(Vi) ) Ek (V0) + ∑
j)1

q

[Ek(Vj(Vi)) - Ek(V0)] (3)

Ek(Vi) ) ∑
j)1

q

[Ek(Vj(Vi))] - (q - 1)Ek(V0) (4)
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A last correction needs to be applied to eq 4 for accurate
correspondence of OptiDock energies with FlexX energies
on a per-compound per-conformation basis. FlexX utilizes
a term to model the loss of entropy that occurs when rotatable
bonds are frozen on binding of a ligand in a protein cleft.
However, the intentional specification of the core as the base
placement done as part of the OptiDock protocol eliminates
the calculation over all bonds in the combinatorial core,
requiring that we calculate this ourselves and add it back
into the term. Consideration of this last term,S(V0), leads to
eq 5, which is the form embedded in the OptiDock code
base.

Note that the entropy term (S(V0)) bears no subscript; it is
based solely on the number of rotatable bonds; 3D structure
is not considered in the calculation, so docking mode is
irrelevant.S(V0) is the same for each compound and each
conformation of an OptiDock run and is strictly a function
of combinatorial core bonds that are a constant for a given
combinatorial library.

Equation 5 makes it possible to calculate FlexX scores
for candidate conformations of a product before generating
the coordinates for that product in that particular docking
mode. The coordinates for the side chains in the contributing

R-core conformations and for the core itself must exist at
that specific docking mode, but not the coordinates of the
corresponding conformation of the product itself. Once a
particular configuration has been selected as interesting-
usually meaning it represents the minimum docking energy
found by OptiDock- an additional calculation is performed
to check for steric clashes (e.g., in the region indicated by
the arrow in Figure 2C). If a configuration fails this test, it
is eliminated, and the next best conformation is tried.

Results and Discussion

Data Sets.References for the three data sets used herein
as examples are laid out in Table 1. The corresponding
structures are provided in Figure 3. All involve libraries for
which the number of variation sites isq ) 3. The smallest,
the L108 data set, consists of 108 compounds (6× 6 × 3),
of which 12 have firm numeric values for affinities. The
small size of this library makes it practical for exploring the

Figure 2. (A and B) Docking configurations for two products from the training set. (C) Docking configurations for one R-core at each
variation site, positioned using the reference placements from the poses shown in panels A and B. The arrow highlights a region in which
a steric clash exists for some substituent combinations.

Table 1. Combinatorial VHTS Systems Used Here as Examples

name library source library dimensions target protein pdb code

Sz11K Szardenning et al.199923 12× 30× 30 collagenase 966ca

K1K Kick et al. 199725 10× 10× 10 cathepsin D 1lybb
L108 Linusson et al. 200127 6 × 6 × 3 thrombin 1h8dc

a See ref 24.b See ref 26.c See ref 28.

Ek(Vi) ) S(V0) + ∑
j)1

q

[Ek(Vj(Vi))] - (q - 1)Ek(V0) (5)

Figure 3. Structures for the combinatorial libraries used in this
study.
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effects of changing various parameters on the results
obtained. The second is the K1K data set (1000 compounds,
10 × 10 × 10), employed here just as it was in validating
the CombiDOCK program.14 This data set includes IC50s
for seven products. The last (Sz11K) is based loosely on
the work of Szardenning et al.23 and is composed of 10 800
products (30× 30 × 12).

All data sets are available in CSLN format from the
authors.

Accuracy of OptiDock Energies.The ability of eq 5 to
reproduce FlexX scores for particular docking poses was
assessed using K1K and a subset of compounds from the
Sz11K data set. Each CSLN was run through OptiDock to
generate a population of docked compounds and associated
docking energies. The poses were then embedded in a
molecular spreadsheet (MSS) and evaluated using the FlexX
scoring function in CSCORE.29 Least squares linear regres-
sion was performed to quantify the correlation between the
two sets of energies. The resulting equations and their
statistics are given as eqs 6 and 7 for K1K and Sz11K,
respectively.

The correlation between the OptiDock energy and the FlexX
energy was very high in both cases. Moreover, the slopes
found were essentially indistinguishable from unity.

The intercepts in eqs 6 and 7 are small, but they are
nonzero. This reflects ambiguity in how FlexX calculates
the entropic penalties for rotatable bonds, as well as
contributions from the methyl blocking groups used to cap
open valences in the R-cores. Both effects are consistent
within a particular combinatorial library, however, and so
do not affect rank-ordering within that library.

Speed.Docking each of theScompounds in the training
set takes the same 1 to 3 min/compound typically required
for FlexX. The R-core dockings are much faster, however,
taking approximately 5-20 s for each. This is because
finding a good base placement is the most time-consuming
step in a FlexX run, and that step is bypassed in docking
these constructs by specifying the base fragment and its
placement. For very large libraries, carrying out the bump
checks needed to qualify the poses corresponding to the
lowest energies calculated using eq 5 becomes rate-limiting
if scores are desired for all products, but the process is still
always very much faster than serial docking.

How much faster OptiDock is than serial docking depends
on the size of the combinatorial library to which it is being

applied, but it depends more strongly onS (the size of the
training set) and onT (the number of reference placements).
In fact, one can easily make OptiDock slower than serial
FlexX by making both unnecessarily large. It is more
informative to consider how OptiDock’s CPU time growth
scales with library size and as program parameters change.

Timings for OptiDock runs on Sz11K using different
numbers of reference core placements are shown in Table
2. CPU consumption is roughly proportional to the number
of reference placements used: doubling the number of
placements doubles the run time. Even with 80 placements,
however, the time consumed by the OptiDock run is trivial
compared to the 10 days required to dock the 10 800
compounds in Sz11K individually. In this case, OptiDock
is 35-105 times faster than FlexX alone.

Efficiency. As noted above, combinatorial docking gener-
ally involves some tradeoff between speed and the quality
of the results obtained. For the OptiDock approach, this
tradeoff is largely determined by how many reference core
placements are needed to adequately cover the range of
docking modes found in the fully enumerated library. The
number of reference placements required is expected to vary
depending on the combinatorial library and the target protein
of interest. This is, indeed, the case.

Table 2 presents the ensemble properties for OptiDock
energies obtained for the Sz11K data set when the number
of placements is varied and the correlations among them (in
all of the experiments described in this section, the minimum
RMSD between core placements was set to 0Å, so none of
the core placements produced were eliminated as redundant
during the Euclidean OptiSim selection step). It is clearly
not necessary to dock all 10 800 compounds to obtain
reproducible energies. The differences in ensemble properties
among 20, 40, and 80 placements are negligible: though
there is a slight drift of maximum energy toward lower
values, the minimum and mean energies show very little
change. The number of placements required for this system
is less than 20, provided that those 20 are diverse and
representative enough to saturate the available docking
modes.

Another way to be sure that a broad enough range of
docking modes is being considered is to supply several
different random number seeds for the OptiSim selections
in OptiDock. Each different seed leads to a somewhat
different training set being selected, which in turn leads to
a somewhat different set of reference core placements. The
system is saturated if there is no appreciable difference
between runs differing only in the random number seed used
when selecting the training set.

Results for such analyses are presented in Table 3 for the
K1K and Sz11K data sets forT ) 124 reference placements.

Table 2. Ensemble Properties OptiDock Energies (kJ) from Sz11K Analyses Using Different Training Set Sizes and
Correlations (r2) among Them

Ta
run time

(min)
minimum

energy
maximum

energy mean energy( SD versusT ) 20 versusT ) 40 versusT ) 80

20 81 -40 -3.5 -20 ( 5.2 1.00 0.86 0.86
40 167 -39 -5 -21 ( 5.1 1.00 0.88
80 279 -39 -7.5 -21 ( 4.9 1.00
a Number of reference core placements used.

EOptiDock ) 2.50+ 0.98EFlexX

(r2 ) 0.997,F ) 108× 103, N ) 108) (6)

EOptiDock ) -1.56+ 0.99EFlexX

(r2 ) 0.998,F ) 203× 103, N ) 288) (7)
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The correlations obtained for K1K with fewer reference core
placements were unsatisfactory: selection of 31 and 62
reference placements led to poor correlations between
successive runs,∼0.40 and 0.5-0.6. At 124 placements, the
correlations are high, and the situation is stable (Table 3).
The correlations are comparable, in fact, to those for Sz11K,
in which the experiment described above demonstrated
docking mode saturation (Table 3).

Table 4 presents the results of applying this method to
the L108 system. Five runs were performed using different
random number seeds but with the maximum number of
ligands included in the training set for docking was held at
10 (runs 10A-10E). Differences between successive runs
were trivial.

This data set is small enough that two distinct kinds of
exhaustive sampling were practical. The first was the case
in which all 108 compounds in the fully enumerated library
were included in the reference placement set (run 108F in
Table 4). These results were as similar to those for the much
smaller reference placement sets as they were to each other,
which indicates that 10 reference placements were adequate
to cover the full range of docking modes for this system.

That docking mode space is more easily saturated for
Sz11K and L108 than for K1K probably reflects two factors.
First, the core structures for the former libraries are relatively
rigid, whereas the core for K1K is much more flexible. As
a result, reference placements must sample a range of
conformations as well as variation in core rotation and
translation. Second, for the Sz11K and L108 libraries, the
core atoms are significant in determining the docking mode.
This direct participation of the core atoms in binding reduces
the number of reference placements required for coverage
in those two data sets.

The central limit theorem guarantees that the information
content of a sample varies with the square root of the sample
size.30 As a result, the first and second observations in a series

are the most cost-effective. A second reasonable breakpoint
comes atT ) [N]1/2, which was used here as a default sample
size. However, the above examples have demonstrated that
this default is not universally applicable and can be either
inadequate (K1K case) or redundantly exhaustive and CPU-
wasteful (Sz11K case). After the data is created and
interpreted, the reasons for the behavior are obvious.
However, this is not the case before the computation is
performed. For OptiDock,adequatesampling can never be
proven. There is always the possibility that some binding
mode is missed. However,inadequatesampling can be easily
recognized. By example, consider the case in which only
the random number seed is changed in the OptiDock protocol
between runs A and B. Now, the resultant energies per
compound between the two runs need to show some
reasonable correlation to one another (RA,B

2 g 0.50). If the
two runs are not well-correlated, then sampling was probably
inadequate, and a larger number of diverse compounds will
be needed.

OptiDock involves stochastic sampling, so it is possible
to use replication to determine whether binding mode
sampling has been adequate. For the reasons outlined above,
this sampling protocol is best done across multiple seeds to
demonstrate a satisfactory degree of coverage of relevant
binding modes.

Correlation with Serial Docking. The OptiDock energies
for L108 are less well correlated with the results obtained
from a serial FlexX run than they are with each other (Table
4). As is shown graphically in Figure 4, the OptiDock
energies are almost all more negative in this case than are
the corresponding energies from separate FlexX runs. Results
for K1K clearly indicate that this is a result of a more
thorough docking mode sampling, since the discrepancy
between OptiDock and serial FlexX energies drift to progres-
sively more negative (i.e., more favorable) values as more
reference placements are used (Figure 5). (Serial FlexX was
actually unable to dock about 50 compounds in this case;
the corresponding data points have been omitted from Figure
5.)

Table 3. Correlations among OptiDock Energies for Sz11K
and K1K Analyses Using 124 Reference Core Placements

data set

K1K Sz11K

runa A B C A B C

A 1 0.83 0.80 1 0.78 0.76
B 1 0.76 1 0.81
C 1 1

Table 4. Correlation of Compound Energies among Runs
for the L108 Data Set

runa

10A 10B 10C 10D 10E 108F serialb

10A 1.00 0.92 0.82 0.95 0.93 0.98 0.83
10B 1.00 0.75 0.92 0.91 0.94 0.75
10C 1.00 0.71 0.89 0.87 0.80
10D 1.00 0.86 0.92 0.78
10E 1.00 0.97 0.83
108F 1.00 0.69

a Except as indicated otherwise, each run name is based on the
number of placements in the reference set (T) and by an indicator
of the random number seed used.b Results from independent
application of FlexX to each compound.

Figure 4. OptiDock energies as a function of serial FlexX energies
for the L108 data set. OptiDock energy represents the best energy
conformer found for that compound against the best energy
conformer found by applying FlexX directly.
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This effect is distinct from the systematic differences seen
when the poses generated using OptiDock are rescored using
FlexX (eqs 2 and 3). The OptiDock poses actually represent
optima in the FlexX scoring function that FlexX itself fails
to find, at least with the parameter settings used here. The
discrepancy results from FlexX’s failing to find globally
optimal base placements initially or from eliminating them
prematurely during subsequent branch-and-prune phases of
the incremental construction process. This should perhaps
not be surprising, since the R-cores can effectively “see”
the base fragmentations and placements explored byeVery
compound in the training set.

OptiDock Energy Versus Binding Affinity. In principle,
one might reasonably expect that finding consistently
superior docking configurations would automatically lead to
better correlation with measured binding affinities. This is
true in some cases but not in others.

Most vHTS validation experiments have focused on
enrichment, that is, on increasing the number of true actives
found among the high-scoring ligands.14,31Such enrichment
can reduce substantially the number of compounds that need
to be assayed for confirmation following a particular vHTS
analysis. Since a virtual docking protocol strives to mimic a
protein ligand complex, high-quality binding affinity data is
valued for docking validation. Unfortunately, real-world
applications are often forced to rely on affinity data from
HTS screens, where error rates are typically high and
extensive accurate affinity data are generally not available.

K1K is just such a data set. Structures and IC50s were
reported only for the seven compounds exhibiting the greatest
inhibition in the primary screen. Comparison of the primary

data provided for these actives with their IC50s indicates
that the HTS assay itself has a relatively high error rate.
Nonetheless, OptiDock enhanced the number of known
actives found consistently within the top 50% of the data
set (Figure 6). Increasing the number of reference placements
employed, which consistently led to better scoring OptiDock
poses (Figure 5), did not yield any qualitative improvement
in results. Serial FlexX did not perform nearly as well in
this case, in that the enhancement found was actually
negative (details not shown).

The L108 library was designed on the basis of a QSAR
analysis of known thrombin inhibitors. The final combina-
torial design included 108 products. Linusson et al.27 then
selected a diverse subset of 18 compounds which, given the
deduced QSAR, were expected to span the full activity range
of the data set. Six compounds predicted to have no activity
indeed proved inactive when synthesized, whereas the other
12 compounds synthesized were active to a greater or lesser
degree. Having these data available made it possible to
examine the relationship between OptiDock energy and
affinity directly, rather than indirectly via enrichment curves.

The correlation between the FlexX energy obtained by
serial docking and measured pIC50 for this data set is quite
good (R2 ) 0.72; Figure 7A). The plots of OptiDock energy
versus pIC50 for the five independent OptiDock L108 runs
cited above are qualitatively similar, but are displaced to
somewhat more negative (more favorable) energies (Figure
7B). They do, however, exhibit lower correlation coefficients
(R2 ) 0.50-0.66). That somewhat different outliers are
observed in each run suggests that the small differences
between runs represent random noise, a notion supported by

Figure 5. OptiDock energies as a function of serial FlexX energies for the K1K data set: (A) 31 reference placements, (B) 62 reference
placements, and (C) 124 reference placements.

Figure 6. Enhancement plots for K1K as a function of the number of reference placements employed: (A) 31 reference poses, (B) 62
reference poses, and (C) 124 reference poses.
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the observation that exhaustive sampling of reference core
placements (T ) 108) showed a similar correlation (R2 )
0.58; Figure 7C).

The displacement of OptiDock scores toward more favor-
able energies in Figure 7 is particularly clear for the lower
affinity ligands and probably accounts for the reduced
correlation, since these correspond to better docking con-
figurations than those used to parametrize FlexX. Such
parametrization entails an implicit assumption that the
binding modes found are optimal for the scoring function;
at least for these ligands and this target, this is evidently not
a safe assumption. Given the prominence of thrombin and
related proteases in the FlexX training set, it seems likely
that the observed discrepancy is a statistical artifact of over-
fitting during training and that it could be relieved by
reparametrization using OptiDock docking. Fortunately, the

effect is small, even within the FlexX training set and is
unlikely to be significant outside of it.

In any event, the correlation between vHTS docking score
(energy) and experimental affinity is better in all three cases
than are those seen for most scoring functions described to
date.4,6,31The good performance seen here probably reflects
the aforementioned presence of thrombin complexes and
complexes of related proteases in the training set used to
develop the FlexX scoring function.1 Most scoring functions
perform less well when entries from the training set are
excluded from the test set, where unrelated compounds are
employed and where multiple targets are considered.4,6,29,31

Example. Figure 8 shows the OptiDock result for one
particular product from the Sz11K library, along with the
corresponding pose obtained by applying FlexX directly. The
reference placement and side-chain configurations for the

Figure 7. Relationship between pIC50 for inhibition of thrombin and docking energy for the L108 data set. (A) Serial FlexX docking (R2

) 0.72). (B) Results from five OptiDock runs, each using 10 different reference docking modes each (R2 ) 0.50 to 0.66). Each symbol type
corresponds to a different random number seed. (C) OptiDock results obtained by exhaustively sampling reference poses (R2 ) 0.58).

Figure 8. Docking poses for a compound from the Sz11K library obtained from OptiDock (yellow) or directly from FlexX (red). The
calculated binding energies were-39.6 and-37.1 kJ/mol, respectively.
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OptiDock pose correspond to those highlighted in yellow
and green in Figure 2. The OptiDock energy calculated from
eq 5 was better in this case for the reference placement
highlighted in purple, but the associated combination of
substituent configurations introduced a steric clash in the fully
assembled product (indicated by the arrow in Figure 2C),
which caused it to be rejected by OptiDock.

Note that the OptiDock and FlexX poses are very similar,
despite the fact that the product in question was not among
those used to generate reference placements, nor were the
substituents it bears present on the products corresponding
to its two best reference placements (Figure 2A,B). Note,
too, that the pose generated by OptiDock is lower in energy
by 2.5 kJ/mol.

Caveat.There is an implicit assumption in the OptiDock
strategy that each substituent in a combinatorial product
interacts more or less independently with the protein target.
This is a reasonable expectation for libraries in which the
variation sites are well-separated in space and seems to hold
true for the three libraries considered here. The assumption
may well break down, however, if the core bears geminal
or vicinal variation sites, in part because there will be too
many steric clashes among the “best” R-core poses. In such
cases, the complementary approach taken in FlexXC, where
such interactions are taken into account directly, may prove
more productive.

Discussion
The development of OptiDock was stimulated by per-

ceived inadequacies in the CombiDOCK and FlexXC pro-
tocols. Both make the assumption that fragments of com-
pounds are adequate for determining binding modes, whereas
the OptiDock procedure starts from the less restrictive
assumption that a representative sampling of whole com-
pounds can adequately define the binding modes. In trials
in which either FlexXC or OptiDock were employed, we
found that fragments are rarely adequate to define binding
modes. For example, FlexXC can be used in a manner that
only the core is used to define binding modes, akin to the
way in which CombiDOCK works. Unfortunately, optimal
binding of the core often leaves no room in the binding cleft
to accommodate addition of substituents larger than halogens
at the variation points. Defining binding modes from the
substituents at a specific variation point often leads to similar
problems: there was not enough room to add substituents.
In general, docking cores only worked well when the cores
were relatively large and the substituents small. Docking
substituent lists (FlexXC methodology) likewise was seen to
be useful only in cases that one variation site dominated the
definition of binding modes. In short, we observed that the
most effective way to identify binding modes is by docking
complete products.

We have approached combinatorial docking as a sampling
problem, working with constructs for which the population
grows in proportion to the scale of the reagent space rather
than to that of the product space. By extracting reference
core placements from poses obtained by docking full
products, the OptiDock method is able to efficiently take
into consideration a range of critical binding interactions that
encompasses the full structural scope of a combinatorial

library. In partcular, docking intact products provides a range
of “holes” for other substituents to fill. The hole left by one
substituent at a particular variation site can guide FlexX to
grow the R-core for adifferentsubstituent along an incre-
mental construction trajectory that, in the end, yields a better
interaction with the target protein than would otherwise be
found.

Another important benefit of our approach is that failure
rates are reduced compared to other combinatorial docking
or serial docking methods. Indeed, OptiDock is able to dock
each member of the K1K dataset where CombiDock had a
25% failure rate and where FlexX serial failed to dock 5%.
Another is that broad sampling can produce better scoring
poses than those generated by serial FlexX docking through
forced consideration of more diverse docking modes, a result
evident in all the datasets we examined. Moreover, this very
desirable result is achieved with no loss of CPU efficiency.

A last crucial strength of approaching docking explicitly
as a sampling problem is that doing so makes it possible to
determine how well the docking mode space is being
explored. In OptiDock, this can be done by comparing results
from independent runs that differ only in the random number
seed used. Getting significantly divergent results indicates
that important binding modes are not being consistently
explored and that a broader sampling of products is needed
to adequately cover conformational space. This ability to
directly evaluate the stability of the methodology is not
available in other docking approaches.

Although not discussed in detail here, it should be obvious
that training sets and reference core placements can also be
specified directly should external data, for example, known
affinities or binding modes evident from X-ray crystal-
lographic analyses or NMR studies, be available that make
such biasing desirable.

Though we used the FlexX program as the docking engine
for the applications described here, the methodology is
equally applicable to any flexible docking procedure that uses
fitness and scoring functions (e.g., the alternative FlexX
function DrugScore32 or, as noted above, those used in
DOCK2,13,14) lacking in intramolecular terms, provided that
it allows for constrained placement of a fixed core structure
while letting substituents flex.
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